
6 APPL THE NASA ACADEMY OF PROGRAM AND PROJECT LEADERSHIP 



I joined the Viking project in its early days 

in 1971 as the Orbiter Software System 

Engineer and stayed on board through 

several months after launch. Viking was a 

significant step in the technology of onboard 

computers and software for NASA and the 

Jet Propulsion Laboratory (JPL). But with 

those advances came many problems to 

solve. We’ve come a long way since then as 

well, but some of the fundamental issues, 

the problems we faced, and the solutions we 

found are all still relevant today. 

I WASN’T EXPECTING TO RETURN TO THE VIKING PROJECT, 
but as they were approaching the encounter, my division 
manager called me into his office and said, “Bob, I really 
need your help.” When my division manager started 
talking to me like that, I knew I was going to say “yes” 
before I even heard what he needed me to do. 

PINPOINTING THE PROBLEM 
The First-Order Image Processing and Enhancement 
System (VISRAP) group had run into some problems. 
The supervisor in charge of that group had gotten 
heavily involved in trying to get new state-of-the-art 
hardware to work and wasn’t managing the software 
development too well. They were partially through 
coding and trying to integrate the software and were 
running into major difficulties. It just flat out didn’t run. 

One of the objectives was to get Viking Orbiter image 
data to the scientists as fast as possible so that they could 
make the best decision about where to land the Viking 
Lander on Mars.They wanted to make a pass of the planet 
in order to send back the Orbiter image data in real time. 
They would then process and enhance the images so they 
could use them to choose the best landing spot. 

As soon as I came on board, I realized that the 
group’s problems had less to do with technology than 
with poor development processes and communications. 
Due to the schedule pressure the programmers had 
stopped documenting design changes that they were 
putting into the code. I had run into this problem before 
on other projects. The programmers got so caught up in 
the coding and testing that the design documents were 
never updated, and the other team members had 
outdated versions of the interface design and functions 
between the design elements. When they went to test or 
use the software, new versions of the code had different 
functions and interfaces than the design documentation 
specified, and those that other team members were 

ASK 19 FOR PRACTITIONERS BY PRACTITIONERS   7 



 

 I CAME IN AND 

SLAMMED ON THE BRAKES. 

I SAID, “WE’RE TURNING THIS 

SHIP AROUND...” 

using for their code. The design elements were incom
patible and would not operate together. 

By the time that I was called in, several months of 
not keeping the design documents updated had passed 
and the programmers couldn’t remember all they’d 
designed and coded. They had to analyze the code to 
determine the correct interfaces and functions, and 
there were no updated design documents to help them. 
They also had not updated the test documents; so they 
had to spend five or ten times as long to fix a problem 
during integration that could’ve been easily solved if the 
documentation was current and correct. Months on the 
project had gone by like this. When the team put their 
software together for integration and testing: the 
software failed. There was no current documentation to 
help them understand why. 

I saw it primarily as a management issue. The 
programmers and the other team members had not 
been given the direction, disciplined process, and 
motivation to ensure successful development and 
integration of the product as a whole. Staying on 
schedule was stressed as a major priority, and they 
lacked the focus to understand what it would take to 
deliver on time. They followed no system for coding and 
documentation; basically, there was no control. 

CRACKING THE CODE 
So recognizing the problem is one thing, but solving 
it is another. 

I understood how they had gotten themselves into 
this mess. In fact, it was learning from my own mistakes 
that helped me begin to tackle their problem. When I’m 
in the creative mode of coding, I can think of a million 
things I should have done better in the design phase. It 
takes a lot of discipline not to just throw the changes 
into the code without concurrently coordinating the 
design and updating the design and test documents. I 
knew I would have to do my best to provide the team 
with that same discipline. 

The programmers were anxious about my takeover 
as soon as JPL management made the announcement. 
First, they didn’t like me because I was an outsider. 
Second, these were programmers who previously had 
the freedom to do all the coding they wanted without 

The Viking lander model. 

documentation. Then I came in and slammed on the 
brakes. I said, “We’re turning this ship around and going 
back to the drawing board.” 

The first thing I did was to shut everything down. I 
said, “There will be no more coding, designing, or fixing 
of errors until we’ve caught up the documentation.” I’m 
still looking for the first programmer that would rather 
do documentation than code, so let’s just say that they 
were not happy campers! I laid out a controlled process 
to keep these problems from repeating: coordinate the 
design to resolve the interface and incompatibility 
problems, document the agreed-upon design changes, 
and correct the code to reflect the coordinated and 
compatible design. 

To do this, we had to keep programmers who 
knew—and hopefully could remember— what they had 
done huddled around the machine. It was a really ineffi
cient way to do business, but my plan was for this to be 
the last time we’d be wading through all the old code. 
Now each time we found a problem, it was coordinated 
across the team and documented. 

Because of this “catch up” process, several weeks 
were tacked onto our already stretched schedule to get 
the design understood, coordinated, and put to use. But 
I was convinced that we could make up some of the time 
by testing efficiency; we’d perform the team coordina
tion and keep the design and test documents current. 
Each time they completed a certain amount of the 
design updates, we reviewed them together. They made 
it clear that they were still annoyed with me, but that was 
okay. We were on the road to recovery. 

Once we had a handle on the documentation, they 
resumed coding and testing. I would schedule updates 
every two to three weeks to address changes that had 
been agreed upon by all affected staff. After the schedule 
was coordinated and everyone agreed to it, the entire 
team got a copy of our new plan. 

When we got started on coding the coordinated 
changes, for a while I still went to their offices every day and 
asked them to “show me your documentation.” My intent 
was not to micromanage, but to hammer home the impor
tance of working as a team. They started doing it on their 
own, at first out of resentment to show me they could. But 
my strategy worked. Believe it or not, they began to see that 

8 APPL THE NASA ACADEMY OF PROGRAM AND PROJECT LEADERSHIP 



”

 

 

I MANAGED THE PROJECT 

BY WALKING AROUND 

AND INTERACTING WITH 

THE TEAM. 

other people’s documentation was useful. They could get 
things done quicker and with a lot less stress and effort. 

After several weeks, the system started showing 
signs of working correctly during the integration testing. 
And for accomplishing the integration, the level of team 
efficiency improved by orders of magnitude. The 
success and pride that came from making the system 
work was a huge motivator. 

HERE TO STAY 
At this point I continued to make it my job, several times 
a day, to hand-carry proposed changes to each person. I’d 
say, “Let’s talk about these changes,” and they’d tell me 
they didn’t have the time. So I’d ask them, “What do you 
need to be able to get the time this afternoon?” Before 
long, people started realizing that I wasn’t going away. 

As I managed the project by walking around and 
interacting with the team, I got to know which people 
were a little quicker and which ones had more trouble. I 
also got to know which people weren’t good at 
managing their workloads. I kept the lines of communi
cation open about how much work each team member 
was carrying, and which person was the best choice to 
implement new changes. 

I also got to actually see the work that was taking 
place rather than reading an email or hearing about it on 
the phone. It took a lot of personal time; but after making 
major process changes and overcoming huge setbacks, 
the last thing I wanted was for the project to fail because 
of bad work habits or the lack of interest on my part. 

The time I invested paid off in the end. The images 
of Mars were delivered by this group to the scientists 
and mission designers on schedule, and they were used 
to accomplish a successful landing. • 

LESSONS 

• Discipline AND creativity are the keys to getting a 
software project completed on time. 
• A direct contact, communication-by-walking-around 
management style can be the most effective control system. 

QUESTION 

To be a good project manager, is it necessary that your team 
likes you? 

WATCH AND LEARN 

BOB LOESH has figured out a fe
things over the length of his 47-yea
career, which he began as 

programmer at the RAND Corporation in 1957
Currently he is the Director of Engineering an
Technology Development at Softwar
Engineering Sciences, Inc., but the majority o
his time was spent at the Jet Propulsio
Laboratory working on high profile project
including Viking and Galileo. During that time, h
served as NASA ’s “go-to” guy for softwar
problems, uncovering what he believes to be th
major obstacles keeping software projec
managers from reaching their full potential. 

“Number one, we don’t have any basic, forma
training—either at the universities or i
companies—for our software project manage
people,” says Loesh. “We put them on a project
they get along with people, they relate t
management, and we promote them.” But h
says there is no training or formal way for the
to learn techniques. And because of this, ther
are not many good models of successful softwar
project managers for them to emulate. 

This goes hand in hand with what Loesh describe
as a second major problem: lack of mentorship
“We don’t mentor our people. We don’t pas
along our experiences, guide them throug
problems, or let them watch what we do and lear
from it,” he says. “You look at occupations lik
bricklaying or machine work, and there’s a
apprenticeship. They do that for a couple of year
and they learn all the right things to do. ”

Without formal training or a way to learn from o
others, each manager is thrust into thei
software project with only the lessons of thei
own experience. Each new project manage
continually recreates the wheel. Loesh adds
“We’re going to repeat these problems over an
over again unless we figure out a way t
effectively train new software project managers. 

w 
r 
a 
. 
d 
e 
f 
n 
s 
e 
e 
e 
t 

l 
n 
r 
, 
o 
e 
m 
e 
e 

s 
. 
s 
h 
n 
e 
n 
s 

f 
r 
r 
r 
, 
d 
o 

ASK 19 FOR PRACTITIONERS BY PRACTITIONERS   9 

An artist’s rendering of the Viking spacecraft. 


